La pandemia di COVID-19 ci ha insegnato che la diagnosi clinica delle infezioni umane emergenti, nonostante la tempestività, non è sufficiente per arginare e controllare l’insorgenza dei focolai, soprattutto quando a causarli sono patogeni in grado di sostenere efficacemente la trasmissione interumana. Ci ricorda inoltre che, per prevenire e rispondere efficacemente alle future emergenze occorre una strategia rinnovata che poggi su due pilastri chiave: l’integrazione delle infrastrutture genomiche/metagenomiche all’interno di programmi di intelligence epidemica e la mobilizzazione delle diverse professionalità che collaborano per la sorveglianza delle malattie emergenti, che è One Health.
Covid-19 con i suoi effetti trasformazionali ha accelerato i tempi dei programmi di sorveglianza genomica, stimolato la condivisione globale del genoma di SARS-CoV-2 e generato una scala di sequenziamento senza precedenti che ha superato l’influenza, l’HIV ed i patogeni di origine alimentare. Ha anche indicato la strada da percorrere per una più efficace collaborazione intersettoriale e transdisciplinare e per la creazione di una base scientifica integrata utile al riconoscimento precoce delle sindromi di malattie insolite ed identificazione rapida di serbatoi animali (trasmissione pre-diagnostica), ancora prima dell’individuazione dell’agente o agenti causali nei casi clinici. E’ fin troppo evidente come l’attesa di prove sostanziali della trasmissione interumana abbia reso i successivi sforzi di contenimento della pandemia inefficaci se non impossibili.
L’ampia circolazione dei coronavirus tra gli animali selvatici, il probabile salto di specie (spillover) di SARS CoV-2 dai pipistrelli all’uomo (o tramite un ospite intermedio) ed il rapido aumento delle varianti SARS-CoV-2 in ospiti non umani, con il potenziale rischio di reinfezione umana, sono condizioni che richiedono attività di monitoraggio più estese con l’acquisizione delle sequenze genomiche dei virus, necessari per poter sviluppare mappe regionali del rischio ed attuare programmi di sorveglianza mirati. SARS-CoV-2 presenta un patchwork genetico unico, a cui hanno contribuito diversi progenitori ed è il risultato di un complesso processo evolutivo e di ricombinazione nei corredi genetici. A volte, la ricombinazione può trasformare un virus non minaccioso in una nuova minaccia, come è il caso della ricombinazione di due coronavirus isolati di recente nei cani in Indonesia con la formazione di un ceppo ibrido che ha infettato otto bambini. Lavori recenti indicano che la distribuzione geografica dei virus SARS-CoV-2 correlati sia molto più ampia di quanto ritenuto in precedenza.
La ricostruzione filogenetica di un frammento genomico chiave per il tropismo e lo spettro degli ospiti di SARS-CoV-2 ha permesso di individuare tre coronavirus nei pipistrelli della specie Rhinolophus spp. nel nord del Laos, geneticamente più simili a SARS-CoV-2 rispetto a RaTG13, ritenuto essere il suo parente più stretto. Sono nuovi virus che presentano un dominio RBD di legame al recettore che differisce di poco rispetto a SARS-CoV- 2, e diversamente dagli altri coronavirus SARS-CoV-2-correlati sono capaci di legarsi fortemente al recettore ACE2 espresso dalle cellule umane. Ciò suggerisce che SARS-CoV-2 abbia potuto acquisire la capacità di trasmissione interumana solo mediante una selezione evolutiva naturale e smentisce l’ipotesi del virus costruito in laboratorio. Pertanto, se la selezione è naturale, l’origine di SARS-CoV-2 deve essere cercata nei serbatoi naturali, in primis nei pipistrelli.
Questi sono gli obiettivi di altri studi di sorveglianza dei nuovi coronavirus condotti negli ultimi mesi in Cambogia, Cina e Tailandia, e parzialmente finanziati con 125 milioni di dollari dall’USAID per il progetto DEEP VZN (Discovery & Exploration of Emerging Pathogens Viral Zoonoses), che opera in Africa, Asia e America Latina. Riguardo ad altri potenziali serbatoi, di recente è stato dimostrato come il sito di scissione della furina S1/2, determinante per il tropismo virale, replicazione e patogenesi di SARS-CoV-2, non presente in genere nei coronavirus dei pipistrelli, sia invece comune nelle sequenze associate ai roditori. Le conferme provengono da altri studi.
Come suggerito di recente su Lancet, One Health è il filo conduttore dei programmi di sorveglianza genomica/metagenomica integrata, che combinano le infezioni umane a quelle degli animali (fauna selvatica e vettori) e alla circolazione ambientale dei patogeni. I potenziali siti di campionamento per le analisi dovrebbero includere sia le zone di maggiore interazione tra uomo e animali selvatici, e quindi a maggiore probabilità di eventi di spillover virale (es. parchi, siti di ecoturismo, foreste), sia luoghi associati ad un rischio più elevato di circolazione virale, come gli aerei a lunga distanza, le stazioni della metropolitana, ma anche i macelli, le acque reflue urbane ed i rifiuti animali.
In sostanza la minaccia di una nuova malattia X con potenziale epidemico o pandemico deve essere affrontata in una prospettiva One Health, utilizzando strumenti di sorveglianza integrata basati su sistemi di informazione geografica, telerilevamento di dati ed epidemiologia molecolare. Le buone intenzioni esistevano già nel 2004, quando l’OMS, la FAO e l’OIE indicarono congiuntamente le direzioni da seguire, ma ciò non è stato sufficiente per prevedere la pandemia di COVID-19. Per il futuro si spera che le raccomandazioni formulate dai leader dell’UE, del G7 e del G20 in occasione dell’Assemblea Mondiale della Sanità nel maggio 2021, e la promessa di importanti investimenti della Commissione Europea per rafforzare l’infrastruttura dedicata alle varianti SARS- CoV-2, forniscano il terreno ideale per affrontare e prevenire le future minacce pandemiche.
Maurizio Ferri
Coordinatore Scientifico SIMeVeP