La lotta al doping animale: il contributo dell’intelligenza artificiale

La lotta al doping animale: il contributo dell’intelligenza artificiale

Ci sono atleti e atleti. Alcuni sono fenomeni veri, campioni straordinari che per talento e lavorando tenacemente raggiungono risultati prodigiosi. Ce ne sono altri che non avendo le stesse doti e meno voglia di sacrificarsi, ma pur di affermarsi, fanno uso di sostanze che accrescono slealmente le loro prestazioni.
La pratica in questione si chiama “doping”.
È un’azione fraudolenta che non è utilizzata soltanto in ambito sportivo. Già, perché se ne fa uso anche negli allevamenti degli animali da reddito.
La somministrazione di farmaci non autorizzati o l’utilizzo di sostanze farmacologiche permesse ma somministrate a bassi dosaggi e per periodi prolungati hanno effetti dopanti sugli animali.
L’uso di questi prodotti può provocare danni e lasciare conseguenze ai consumatori.
L’assunzione di carne con residui di molecole non autorizzate, infatti, può essere pericolosa per l’essere umano, soprattutto per i soggetti con delle pregresse patologie.
Svelare la loro presenza, dunque, è indispensabile per proteggere la salute dei cittadini.
Per poter fronteggiare questa piaga il CIBA – Centro di Referenza Nazionale per le Indagini Biologiche sugli Anabolizzanti Animali -, che ha sede presso l’Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, in collaborazione con il Dipartimento di Scienze Veterinarie dell’Università degli studi di Torino, ha applicato un programma di apprendimento automatico Weka (Waikato Environment for Knowledge Analysis) per svelare l’uso illecito di cortisonici per il “doping animale”.
È stato sviluppato un modello predittivo in grado di individuare i vitelli dopati con cortisonici, che sono i principi attivi di più largo utilizzo per “ingrassare” in modo fraudolento i bovini.
Sono sostanze che di fatto sono anche responsabili di enormi effetti collaterali per l’uomo, tra cui l’aumento della pressione sanguigna, l’iperglicemia e l’immunosoppressione.
Il modello generato da Weka è in grado di classificare correttamente il 95% degli animali testati sulla base dei valori di cinque biomarcatori sierici (cortisolo, inibina, capacità antiossidante del siero, osteocalcina, e urea).
La ricerca ha confermato quanto e come l’intelligenza artificiale può essere applicata con eccellenti risultati a salvaguardia della salute dei consumatori e a tutela del benessere animale.

Fonte: IZS Piemonte, Liguria e Valle d’Aosta




ISS. Zanzare in Italia: raccolta, identificazione e conservazione delle specie più comuni

Negli ultimi anni l’Italia è stata colpita da eventi epidemici riconducibili a malattie trasmesse da zanzare, quali West Nile, chikungunya e dengue. Per migliorare la preparedness e le capacità di rispondere a queste minacce è importante in un paese identificare ruoli, responsabilità e attività da implementare, ottimizzando risorse umane ed economiche.

Da qui l’esigenza di dotarsi di personale formato, in grado di riconoscere i rischi legati alle zanzare, avviare sistemi di sorveglianza entomologica, organizzare strategie di contrasto e, quando necessario, applicare misure di emergenza.

L’Istituto Superiore di sanità ha realizzato quindi una guida, uno strumento pratico non solo per conoscere biologia e distribuzione delle zanzare più comuni o di maggiore interesse sanitario, ma anche che permettesse di identificarle facilmente.

Attraverso un approccio rigoroso, ma semplificato, si è privilegiata la scelta di caratteri morfologici stabili e chiaramente osservabili. A supporto dell’opera, vengono fornite utili chiavi dicotomiche, con disegni schematici esplicativi.

Scarica il volume




Prima segnalazione in Europa di Circovirus suino di tipo 2e

Una collaborazione tra il Laboratorio patologia e benessere della specie suina dell’Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) e il Dipartimento di medicina animale, produzioni e salute dell’Università di Padova ha portato alla prima segnalazione di Circovirus suino di tipo 2e (PCV-2e) in Europa. Questa variante del virus, identificata in campioni prelevati da un allevamento veneto, finora era stata rilevata solo in Asia e Nord America. La scoperta è stata quindi pubblicata nella rivista scientifica internazionale The Veterinary Journal.

Il Laboratorio patologia e benessere della specie suina dell’IZSVe e il Dipartimento di medicina animale, produzioni e salute dell’Università di Padova hanno rilevato per la prima volta la presenza di Circovirus suino di tipo 2e (PCV2-e) in Europa. Questa variante del virus – che può determinare nei suini diverse condizioni cliniche che rientrano nel quadro denominato Porcine Circovirus Disease (PCVD) – finora era stata rilevata solo in Asia e Nord America. La variante è stata identificata in campioni prelevati da un allevamento veneto.

Il Circovirus suino di tipo 2 (PCV-2) è un agente patogeno diffuso in tutto il mondo che può determinare nei suini diverse condizioni cliniche che rientrano nel quadro denominato Porcine Circovirus Disease (PCVD), causando gravi perdite economiche per gli allevatori del settore. Ad oggi la circolazione di PCV-2 in allevamento determina prevalentemente forme subcliniche, che non dovrebbero comunque essere trascurate in quanto associate a una diminuzione della produttività degli animali.

PCV-2 è un virus a DNA circolare a filamento singolo, con un genoma di circa 1.7 kb. Attualmente sono riconosciuti 8 genotipi (PCV-2a-h), di cui solo tre (PCV-2a, -2b, -2d) hanno dimostrato di avere una distribuzione a livello mondiale, mentre gli altri sono stati segnalati occasionalmente. L’elevata variabilità del virus ha spinto a mettere in discussione l’efficacia dei vaccini in uso verso le varianti più recenti, e aumentato l’interesse di veterinari e allevatori per l’identificazione del genotipo virale circolante in azienda.

Il rilevamento di PCV-2e da parte dei ricercatori della sezione di Pordenone dell’IZSVe e dell’Università di Padova nasce proprio dalla richiesta di genotipizzare alcuni virus isolati da campioni prelevati in un allevamento suinicolo del Veneto. I suini controllati non presentavano sintomi suggestivi di PCVD e il ritrovamento è stato accidentale, ma ciò non significa che il virus sia innocuo per gli animali. Bisogna tenere infatti in considerazione che PCV-2e è il più diverso tra i genotipi di PCV-2 e presenta un fenotipo distinto, al punto che già in passato sono stati espressi dubbi sull’efficacia dei vaccini disponibili contro questa variante.

A questo aspetto si aggiunge l’identificazione di stipiti virali appartenenti al più comune genotipo PCV-2d in campioni prelevati dallo stesso allevamento, effettuata in seguito ad ulteriori approfondimenti diagnostici. Ciò ha confermato la contemporanea diffusione nell’allevamento di due genotipi: un fattore che può non solo aggravare la sintomatologia negli animali, ma anche rendere possibili fenomeni di ricombinazione in caso di coinfezione, favorendo ulteriormente l’incremento della variabilità di PCV-2.

Di conseguenza, anche se l’assenza di sintomatologia clinica è un aspetto favorevole, non bisogna abbassare la guardia dato che la PCVD è caratterizzata da una patogenesi multifattoriale. Per questo i ricercatori raccomandano di alzare la soglia di attenzione nella sorveglianza sulla possibile circolazione del genotipo PCV-2e in Italia e in Europa, non potendo escludere una sua più vasta diffusione.

Leggi l’articolo scientifico su The Veterinary Journal »

Fonte: IZS Venezie




Encefalite da zecche: primo caso diagnosticato in un capriolo

Ricercatori dell’Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe) hanno diagnosticato il primo caso di encefalite da zecca (TBE, Tick Borne Encephalitis) in un capriolo, in provincia di Belluno, area in cui la malattia è endemica. Finora non erano mai stati segnalati casi clinici di virus TBE nei cervidi. Questo caso, oltre all’interesse in termini di diagnosi differenziale, riporta l’attenzione sull’importanza della sorveglianza epidemiologica delle zoonosi in un ambiente in costante trasformazione. Lo studio è stato pubblicato sulla rivista scientifica Viruses.

Ricercatori dell’IZSVe hanno diagnosticato il primo caso di encefalite da zecca (TBE) in un capriolo in provincia di Belluno, area in cui la malattia è endemica. Finora non erano mai stati segnalati casi clinici di virus TBE nei cervidi. I ricercatori, con un approccio metagenomico, sono riusciti a sequenziare il genoma virale del caso in questione, confermando una stretta correlazione con il sottotipo europeo del virus.

La TBE, o meningoencefalite primaverile-estiva, è una zoonosi virale acuta del sistema nervoso centrale, trasmessa principalmente attraverso morsi di zecche infette a diversi mammiferi, compreso l’uomo. I vettori della malattia in Europa sono principalmente le zecche Ixodes ricinus. Ad oggi sono noti cinque sottotipi virali, filogeneticamente classificati e caratterizzati per diversa distribuzione geografica e gravità della patologia indotta nell’uomo. In Europa occidentale è prevalente il sottotipo europeo, che presenta un tasso di mortalità inferiore al 2%. I ricercatori, con un approccio metagenomico, sono riusciti a sequenziare il genoma virale del caso in questione, confermando una stretta correlazione con questo sottotipo.

In Italia la presenza del virus è attualmente limitata alla parte nord-orientale. In particolare nella provincia di Belluno, area di provenienza del giovane capriolo, si rilevano circa il 40% di tutti i casi umani di TBE nel nostro paese. L’animale, di un anno d’età, è stato individuato grazie al costante e attento monitoraggio nella zona effettuato dalla Polizia Provinciale, con cui da anni l’IZSVe ha un rapporto di stretta collaborazione. La presenza di gravi sintomi neurologici, in particolare atassia, movimenti barcollanti ed equilibrio precario, tremori muscolari, movimenti ripetitivi della testa, digrignamento dei denti, ipersalivazione e decubito prolungato, ha indotto gli agenti sul campo a considerare prontamente il soggetto per gli accertamenti sanitari.

Il ciclo della TBE dipende da diversi fattori interconnessi tra loro come il clima, la tipologia di territorio e la densità di zecche e degli animali ospite in cui si nutrono. Giocano un ruolo chiave sia gli animali competenti nella trasmissione del virus alle zecche, come i piccoli roditori, sia altri animali come gli ungulati selvatici. Infatti questi ultimi, anche se non competenti nella trasmissione del virus, svolgono un ruolo rilevante nel garantire la sopravvivenza e l’abbondanza delle popolazioni di zecche. Per questo i focolai di TBE hanno una distribuzione irregolare, che va da pochi metri quadrati a diversi chilometri quadrati.

Il caso descritto non è naturalmente da interpretare come un’allerta, in quanto l’area di provenienza era già notoriamente endemica per la malattia, e anche in caso di espansione in un nuovo territorio sarebbe molto più probabile osservare casi prima nell’uomo che negli animali. Questo studio piuttosto, sebbene limitato ad un singolo caso, mette in luce l’importanza della sorveglianza sanitaria sulla fauna e del suo inquadramento nel contesto ecologico, poiché evidenzia per la prima volta la possibilità di un impatto clinico dell’infezione nei ruminanti selvatici.

È importante mantenere alta l’attenzione sulle variazioni imprevedibili nell’epidemiologia delle malattie che possono far aumentare il rischio di infezione per l’uomo.

Fonte: IZS Venezie




L’EFSA valuta ex novo la sicurezza dell’etossichina, un additivo per mangimi

L’EFSA ha valutato nuovamente l’additivo per mangimi etossichina senza poter giungere a conclusioni circa la sua sicurezza per alcuni gruppi di animali, per i consumatori e l’ambiente.

L’etossichina era autorizzata fino al 2017 nell’UE per le sue proprietà antiossidanti come additivo per mangimi destinati a tutte le specie e categorie animali. L’etossichina è usata anche per prevenire la combustione spontanea della farina di pesce durante il trasporto via mare.

La presenza della p-fenetidina, un’impurità che resta nell’additivo dopo il processo produttivo ed è un possibile agente mutageno (cioè può provocare mutazioni nel materiale genetico degli animali e dell’uomo), ha fatto sì che gli esperti del gruppo scientifico dell’EFSA sugli additivi e i prodotti o le sostanze usati nei mangimi non potessero escludere rischi per gli animali con lunga aspettativa di vita né per quelli destinati alla riproduzione. Al contrario l’additivo è considerato sicuro per gli animali allevati per la produzione di carne quali polli, maiali, bovini, conigli e pesci.

A causa della mancanza di dati sulla presenza di p-fenetidina nei tessuti e nei prodotti alimentari di origine animale, gli esperti non hanno potuto trarre conclusioni nemmeno per la salute dei consumatori.

Il gruppo di esperti ha tuttavia evidenziato la necessità di ridurre al minimo l’esposizione degli utenti tramite inalazione a causa della presenza di questa impurità nell’additivo.

Gli esperti non hanno potuto giungere a conclusioni circa la sicurezza dell’etossichina per gli ecosistemi terrestri e acquatici quando l’additivo viene usato negli animali terrestri. Non si può inoltre escludere un rischio di contaminazione tramite la catena alimentare acquatica né un rischio per gli organismi marini esposti ai sedimenti contenenti etossichina usata nelle gabbie per acquacoltura.

La Commissione europea e gli Stati membri, in qualità di gestori del rischio, terranno conto del parere dell’EFSA al momento di riesaminare la sospensiva dell’autorizzazione dell’additivo.

Antecedenti

Nel giugno 2017 la Commissione europea ha sospeso l’autorizzazione dell’etossichina come additivo nei mangimi per tutte le specie animali. La sospensione è seguita a un parere dell’EFSA pubblicato nel 2015, in cui gli esperti dichiaravano di non poter giungere a conclusioni circa la sicurezza dell’additivo a causa di una carenza generale di dati e della presenza di p-fenetidina.

Fonte: EFSA




SARS-COV-2: più efficacia nella caccia alle varianti

 Un nuovo metodo di analisi matematica permette di tipizzare i campioni con alta precisione e maggiore velocità. Un contributo importante al tracciamento del virus e della sua evoluzione.

Nella lotta alla pandemia una delle principali priorità è seguire l’evoluzione del virus, individuando la comparsa di nuove varianti e valutandone la diffusione. Precisione e velocità delle analisi genomiche sono elementi fondamentali di questa sorveglianza, gli stessi al centro di una recente ricerca dell’Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise.

I ricercatori del “Centro di Referenza Nazionale per Sequenze Genomiche di microrganismi patogeni: banca dati e analisi di bioinformatica” (GENPAT) dell’IZSAM hanno sviluppato un nuovo metodo matematico per analizzare e confrontare il genoma di grandi quantità di campioni virali. Pubblicato sulla rivista scientifica BMC Genomics, il metodo proposto permette di identificare i diversi ceppi di virus e ricostruire la loro evoluzione (la cosiddetta analisi filogenomica) con livelli di precisione paragonabili ai metodi già in uso, ma in tempi estremamente più rapidi.

La caccia alle varianti è un procedimento molto complesso, che parte dai semplici tamponi. Il codice genetico dei campioni virali raccolti viene prima di tutto sequenziato con tecniche ad alta capacità (NGS, Next Generation Sequencing), poi deve essere tipizzato in modo da effettuare confronti tra i virus, trovare similitudini o differenze e, per queste ultime, stabilire le “distanze” genetiche tra un ceppo e l’altro. Un procedimento matematico il cui risultato è la classificazione delle varianti secondo la nomenclatura internazionale “PANGO”. Ma si può anche rendere graficamente: una serie di ramificazioni, quasi un cespuglio, che ci dicono la storia di una variante e, in qualche misura, come si sta diffondendo.

“I procedimenti comunemente in uso – dice Adriano Di Pasquale, Centro di Referenza Nazionale GENPAT – hanno il vantaggio di essere veloci, un elemento importante quando parliamo di una pandemia, ma non sono molto precisi. In altri termini, ci danno certamente una fotografia delle varianti e della loro evoluzione, ma è poco dettagliata. Aumentare la precisione, d’altro canto, richiede tempi molto lunghi, anche utilizzando computer potenti”.

L’algoritmo elaborato dai ricercatori IZSAM, invece, permette di aumentare notevolmente la risoluzione delle indagini genomiche mantenendo la rapidità necessaria. “Oltre ad individuare la diffusione di una variante – aggiunge Nicolas Radomski, GENPAT – ora possiamo seguirne la trasmissione, sia in termini di tempo che di spazio, osservando passo passo le ramificazioni che si stanno creando”.

Nato dall’analisi dei campioni di virus raccolti in Abruzzo e analizzati dallo Zooprofilattico di Teramo, il nuovo metodo matematico viene ora proposto a livello internazionale. “Pensiamo che possa essere un valido strumento per tutte le realtà che operano nel contesto della pandemia. – conclude Di Pasquale – È per questo che lo avevamo già messo a disposizione di tutti, sul portale Medrxiv. Abbiamo riscontrato un notevole interesse da parte di varie istituzioni, ed è già in corso una collaborazione con l’Istituto Nazionale di Sanità (INSA) portoghese”.

 Fonte: IZS Teramo



Zanzare ed epidemie: un modello per mappare il rischio

Il sistema sviluppato dall’Osservatorio Nazionale di Atene con Istituto Zooprofilattico Sperimentale delle Venezie, Fondazione Edmund Mach e Università di Trento è stato premiato dalla Commissione Europea come miglior modello per predire le epidemie trasmesse dalle zanzare. Grazie ai nuovi fondi, sarà perfezionato un prototipo in grado di fornire in anticipo preziose indicazioni sull’intensità e la localizzazione di malattie come la malaria o la dengue.

Controllare le zanzare (anche) dallo spazio. Sembra un paradosso e invece è il fulcro di Eywa (EarlY WArning System for Mosquito-borne diseases), il sistema avanzato di allerta precoce per le malattie trasmesse dalle zanzare. Un progetto multidisciplinare coordinato dall’Osservatorio Nazionale di Atene al cui sviluppo partecipano l’Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), la Fondazione Edmund Mach (FEM) e l’Università di Trento (UniTrento).

Oggi l’80% della popolazione mondiale vive in aree dove è presente almeno una delle principali malattie trasmesse dalle zanzare, territori dove patologie come malaria, Chikungunya, dengue, febbre gialla o Zika causano oltre 700.000 morti all’anno.

Per contribuire a prevenire e mitigare l’impatto di queste malattie, la Commissione europea ha indetto un premio per finanziare il miglior prototipo che, basandosi dati geo-spaziali, consentisse di monitorarle e prevenirne la trasmissione all’uomo.

Una selezione nella quale il sistema Eywa è risultato il migliore, conquistando il primo premio e ricevendo una sovvenzione di 5 milioni di euro. Basato sulla combinazione di attività di campionamento e sorveglianza sul campo, su analisi di laboratorio, sviluppo di modelli matematici e mappe dinamiche, l’obiettivo di Eywa è quello di combinare i big data derivanti dall’osservazione della Terra e parametri ambientali, climatici, meteorologici, socioeconomici, demografici raccolti sul campo, definendo così un’infrastruttura capace di disegnare modelli predittivi di diffusione affidabili.

L’approccio interdisciplinare di Eywa – che incrocia i dati spaziali del portale Geoss, quelli raccolti dal programma di osservazione satellitare terrestre Copernicus e quelli ottenuti con attività sul campo – è stato possibile attraverso l’incrocio di varie competenze e professionalità. Una sinergia tra diversi attori che potrà ora beneficiare di un importante finanziamento per crescere e perfezionarsi, un percorso di affinamento al quale saranno chiamati anche i partner italiani del progetto, a cominciare dal Laboratorio di parassitologia, micologia ed entomologia sanitaria dell’IZSVe.

“Il progetto ha visto la collaborazione fra vari paesi, e il suo successo si basa sull’incontro di professionalità molto diverse, dagli entomologi ai matematici” dichiara Gioia Capelli, direttore sanitario dell’IZSVe “Ancora una volta le malattie trasmesse da vettori ci insegnano quanto l’approccio multidisciplinare settoriale alla salute unica sia oggi necessario. Il ruolo del nostro Laboratorio è stato quello di fornire i dati derivanti dal sistema di sorveglianza entomologica della West Nile Disease. Il dataset è stato utilizzato per confrontare e validare i dati predittivi sviluppati dai modelli matematici del sistema Eywa con dati reali di presenza e densità di zanzare Culex pipiens e del genere Anopheles in Veneto, vettori rispettivamente di West Nile virus e malaria”.

Tra i numerosi dati che compongono il sistema Eywa e partecipano alla definizione di un modello accurato, quelli ottenuti attraverso l’attività di campionamento entomologico in Trentino, un’azione svolta dalla Fondazione Edmund Mach, con particolare attenzione per le specie di zanzare di maggior interesse per la sanità del territorio.

“L’attività di ricerca della FEM che coordina il tavolo provinciale sul monitoraggio della zanzara tigre e di altre specie di vettori di interesse sanitario – spiega Annapaola Rizzoli, responsabile dell’Unità Ecologia applicata alla salute del Centro Ricerca e Innovazione – prevede di effettuare campionamenti sulle specie di zanzare di maggior interesse per la sanità, ma anche analisi di laboratorio finalizzate allo studio dei parametri vitali delle specie, incluso lo studio delle preferenze alimentari, e lo sviluppo di modelli matematici di previsione. Questa iniziativa senz’altro permetterà nuove collaborazioni scientifiche dalle potenziali importanti ricadute per la salute pubblica, non solo locale ma anche internazionale.

Quanti più sono i dati raccolti, e più ricca è la loro provenienza, tanto più sono necessari modelli matematici capaci di leggerli.

“Il nostro gruppo – chiarisce Andrea Pugliese, matematico di UniTrento – lavorava da tempo sulla modellizzazione dell’infezione del virus West Nile, una delle malattie trasmesse dalle zanzare. Cercavamo di capire come il clima, le temperature o altri fattori rendessero tali epidemie alcuni anni più pesanti e altri meno. Una expertise che abbiamo messo al servizio di Eywa per creare un sistema che avesse buoni livelli di predittività, per studiare le incidenze dei virus nelle varie zone. Un sistema che funziona abbastanza bene e che, con i nuovi fondi della Commissione europea, dovremo ora affinare ulteriormente”.

Il sistema EYWA è in fase di attuazione operativa in nove regioni europee e, da quest’anno, sarà trasferito nei paesi extra UE, Costa d’Avorio e Thailandia.

Fonte: IZS Venezie




Peste suina africana (PSA): le indicazioni di ISPRA

Peste Suina AfricanaIl 7 gennaio scorso è stata confermata dal Centro di Referenza Nazionale per le Pesti suine dell’Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”  la presenza della peste suina africana (PSA) al confine tra Piemonte e Liguria.

Il Ministero della Salute con il supporto dell’Unità di Crisi Centrale e il Gruppo di Esperti in materia di PSA, ai quali ISPRA partecipa, sta attivando con urgenza le procedure sia per la delimitazione dell’area infetta sia per contrastare l’ulteriore diffusione della malattia.

In considerazione delle possibili gravi ripercussioni per il comparto suinicolo e i settori produttivi ad esso collegati, è infatti di cruciale importanza limitare la diffusione della PSA attraverso l’adozione di drastiche misure di biosicurezza, che dovranno riguardare anche lo svolgimento dell’attività venatoria. Si apre una fase in cui la gestione del cinghiale nelle aree infette e nelle zone circostanti richiederà uno sforzo molto impegnativo alle Regioni e alle Aree protette interessate, alle quali ISPRA garantisce fin da subito il proprio supporto tecnico, in stretto coordinamento con le autorità sanitarie.

La PSA è una malattia infettiva altamente contagiosa in grado di provocare un’elevata mortalità nei suidi sia domestici sia selvatici di qualsiasi età e sesso. Il virus rimane vitale per lungo tempo anche dopo la morte dell’animale, rendendo le carcasse ancora infettanti e in grado di trasmettere il virus. Per tale motivo è di cruciale importanza la segnalazione immediata del ritrovamento di cinghiali morti, anche se incompleti o in avanzato stato di decomposizione, ai Servizi Veterinari localmente competenti (anche per tramite di Carabinieri forestali, Polizia provinciale, Polizia locale).

Chiarimenti di ISPRA in materia di gestione della Peste suina africana
Perché è importante sospendere qualsiasi tipo di attività venatoria nella zona infetta da Peste suina africana?

Perché si tratta di attività che comportano un duplice rischio: la movimentazione di cinghiali potenzialmente infetti sul territorio, soprattutto conseguente al ricorso di tecniche che utilizzano i cani, e la diffusione involontaria del virus attraverso calzature, indumenti, attrezzature e veicoli.

Perché è importante regolamentare qualsiasi tipo di attività venatoria nell’area confinante con la zona infetta (entro 10 km dal confine)?

Perché, considerati i rischi che comporta per la diffusione della Peste suina africana, è importante che siano adottate modalità di prelievo venatorio, volte a limitare al massimo il disturbo ai cinghiali per non aumentarne la mobilità, unitamente a misure di biosicurezza in grado di ridurre il rischio di diffusione del virus come effetto della contaminazione di indumenti, scarpe, materiali e veicoli.

La comparsa della Peste suina africana è dovuta alle elevate densità di cinghiale?

No, la comparsa del virus è totalmente indipendente dalle densità di cinghiale. Le popolazioni di cinghiale infette più vicine all’Italia vivono a diverse centinaia di km di distanza. La comparsa dell’infezione nel cinghiale in Piemonte e Liguria è sicuramente dovuta all’inconsapevole introduzione del virus da parte dell’uomo.

L’elevata densità del cinghiale favorisce la persistenza del virus?

La densità del cinghiale non ha effetti significativi sulla persistenza in natura della Peste suina africana. La notevole resistenza del virus nell’ambiente fa sì che la malattia continui a circolare per anni, anche in popolazioni di cinghiale a densità bassissime (es. circa 0,5/km2).

Allungare il periodo consentito per la caccia in braccata in questa fase epidemiologica è utile a prevenire la diffusione delle Peste suina africana?

No. In questa fase in cui è ancora in corso di definizione l’area effettivamente interessata dall’infezione, è anzi fortemente consigliato evitare qualsiasi attività che possa causare la dispersione degli animali sul territorio e con essa la possibile diffusione del virus, sia in modo diretto, aumentando la mobilità di eventuali cinghiali infetti, sia in modo indiretto, come effetto della contaminazione di indumenti, scarpe, materiali e veicoli.

Secondo le simulazioni effettuate, per poter rallentare significativamente la diffusione della Peste suina africana si dovrebbe rimuovere nel brevissimo periodo la quasi totalità della popolazione di cinghiale (circa il 90%), obiettivo irrealistico da raggiungere nella gran parte dei contesti presenti sul territorio nazionale.

La presenza del lupo contribuisce alla diffusione della Peste suina africana?

La presenza del lupo non appare avere effetti rilevanti sulla diffusione della Peste suina africana. Recenti studi effettuati in aree infette della Polonia, hanno verificato l’assenza totale del virus nelle feci di lupo, dimostrando che il passaggio nel tratto intestinale ne provoca la degradazione completa. Inoltre gli enzimi presenti nella saliva danneggiano la superficie esterna del virus limitandone l’infettività. Al contrario, il lupo potrebbe contribuire a limitare la circolazione della Peste suina africana sia predando di preferenza gli individui malati, sia consumando le carcasse infette.

Cosa fare se si trova una carcassa di cinghiale in un’area al di fuori della zona infetta?

Segnalarla immediatamente ai Servizi veterinari regionali, mediante il numero appositamente creato da ciascuna regione o eventualmente utilizzando il 112, fornendo indicazioni sull’ubicazione precisa e opportuna documentazione fotografica del ritrovamento.

***

ISPRA sottolinea la necessità di seguire rigorosamente le indicazioni tecniche della autorità nazionali competenti (con le quali ISPRA collabora costantemente) e l’importanza cruciale della ricerca attiva delle carcasse di cinghiale, da segnalare immediatamente ai Servizi veterinari regionali in caso di ritrovamento.

Le indicazioni della autorità nazionali competenti sono articolate nei tre livelli territoriali individuati: zona infetta; area confinante con la zona infetta (entro 10 km dal confine); intero territorio nazionale.

Nella zona infetta è prioritario assicurare una gestione della popolazione di cinghiale coordinata e efficace, con l’unico scopo di ottenere nel breve periodo l’eradicazione del virus, condizione essenziale per riprendere le normali attività di allevamento, caccia, trekking, mountain biking, utilizzo del bosco e fruizione pubblica delle aree naturali in essere precedentemente all’epidemia.

Al di fuori della zona infetta e dell’area confinante, al momento l’unica prescrizione delle autorità nazionali competenti riguarda la movimentazione dei cinghiali vivi; resta ferma per le autorità locali competenti la possibilità di introdurre ulteriori misure restrittive.

Misure inerenti all’ambito faunistico

 Fonte: ISPRA




Escherichia coli resistenti agli antibiotici: un confronto genetico per comprendere la trasmissione della resistenza tra animali e uomo

antibioticoresistenzaI cloni di Escherichia coli che infettano o colonizzano l’uomo e gli animali allevati per la produzione di alimenti potrebbero circolare fra le diverse specie che li ospitano, scambiandosi geni che conferiscono meccanismi di resistenza agli antibiotici. Per questo è importante adottare un approccio One Health nella sorveglianza dell’antibiotico-resistenza dei batteri patogeni, analizzando e confrontando con metodi armonizzati il genoma di batteri isolati da matrici umane e animali.

A suggerirlo sono anche i risultati di un progetto di ricerca finanziato nel 2015 dal Centro nazionale per la prevenzione e il controllo delle malattie (CCM) e realizzato da 15 istituti italiani di sanità pubblica tra cui l’Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe). Lo studio è stato pubblicato di recente dalla rivista scientifica International Journal of Antimicrobial Agents.

Il problema sanitario degli E. coli resistenti agli antibiotici

Le beta-lattamasi a spettro esteso (ESBL) sono enzimi in grado di conferire ai batteri la capacità di resistere all’azione di vari antibiotici, in particolare alle cefalosporine di terza e quarta generazione. A partire dagli anni 2000 la ricerca scientifica ha evidenziato una progressiva diffusione di alcuni cloni di Escherichia coli in grado di produrre ESBL, isolati sia nell’uomo che in animali allevati per produrre alimenti. La ricerca scientifica sta quindi cercando di stabilire se i geni codificanti ESBL possono trasmettersi da un isolato all’altro di E. coli, venendo acquisiti dai ceppi che infettano maggiormente l’uomo.

Le beta-lattamasi a spettro esteso (Extended-Spectrum Beta-Lactamases, ESBL) sono enzimi in grado di conferire ai batteri la capacità di resistere all’azione di vari antibiotici, in particolare alle cefalosporine di terza e quarta generazione. Questi antibiotici sono utilizzati per il trattamento di alcune importanti infezioni batteriche umane, tra cui quelle sostenute da Klebsiella pneumoniae e quelle extra-intestinali causate da E. coli.

A partire dagli anni 2000 la ricerca scientifica ha evidenziato una progressiva diffusione di alcuni cloni di E. coli in grado di produrre ESBL, fra cui in particolare il clone denominato ST131, che hanno complicato considerevolmente la terapia di queste infezioni sia in comunità che in ambito ospedaliero.

Negli ultimi anni sono inoltre in aumento le segnalazioni di E. coli ESBL-produttori negli animali allevati per la produzione di alimenti.  Anche se il clone ST131 viene sporadicamente isolato in queste specie, i geni codificanti ESBL potrebbero trasmettersi da un isolato all’altro di E. coli, venendo acquisiti dai ceppi che infettano maggiormente l’uomo.

Su questa ipotesi la letteratura scientifica ha fornito sinora evidenze contrastanti: alcuni studi hanno rilevato in E.coli isolati dagli animali e dall’uomo i medesimi geni codificanti ESBL, mentre altri hanno evidenziato differenze fra i geni codificanti questi enzimi in relazione alle specie animali da cui i batteri erano isolati.

E. coli può inoltre disporre di altri geni che producono ulteriori meccanismi di resistenza agli antibiotici. Tra questi i geni che codificano le carbapenemasi, enzimi che conferiscono resistenza a diversi principi attivi tra i quali i carbapenemi, utilizzati nell’ambito della clinica umana per il trattamento di E. coli resistente alle cefalosporine di terza generazione, oppure i geni in grado di conferire resistenza alla colistina (mobile colistin resistancemcr), antibiotico salvavita somministrato per contrastare i batteri resistenti proprio ai carbapenemi, oltre che ad altri antibiotici.

Uno studio One Health sugli E.coli resistenti

Tra marzo 2016 e settembre 2017 è stato realizzato un ampio studio sulle caratteristiche di E. coli ESBL-produttori isolati in Italia sia dall’uomo che da diverse specie di animali allevati per la produzione di alimenti. Sono stati analizzati 925 isolati di E. coli ESBL-produttori raccolti da 12 ospedali e di 3 istituti zooprofilattici diversi, tra cui l’IZSVe. Gli isolati sono stati sottoposti a screening molecolare per verificare la presenza di geni codificanti ESBL, quindi classificati con ulteriori metodi molecolari in gruppi filogenetici e cloni.

Per comprendere quindi se gli animali e gli alimenti da essi derivati possono contribuire alla trasmissione delle resistenze verso le cefalosporine di terza e quarta generazione in batteri patogeni per l’uomo, tra marzo 2016 e settembre 2017 è stato realizzato un ampio studio sulle caratteristiche di E. coli ESBL-produttori isolati in Italia sia dall’uomo che da diverse specie di animali allevati per la produzione di alimenti.

Il progetto, che rappresenta uno dei primi esempi in Italia di approccio One Health nella ricerca sulle resistenze batteriche agli antimicrobici, ha coinvolto i laboratori di 12 ospedali e di 3 istituti zooprofilattici sperimentali situati in 6 diverse regioni italiane: Friuli Venezia Giulia, Trentino Alto Adige, Veneto, Lombardia, Lazio e Sicilia.

I partner del progetto hanno contribuito alla raccolta di 925 isolati di E. coli ESBL-produttori individuati durante le loro attività diagnostiche di routine. Di questi, 480 provenivano da matrici umane (urine o sangue) e 445 da matrici animali (feci o intestino). In particolare, gli isolati di origine animale sono stati prelevati da bovini (29,4%), suini (27,0%) e specie avicole (43,6%).

Questi isolati sono stati sottoposti a screening molecolare per verificare la presenza di geni codificanti ESBL e carbapenemasi; quindi sono stati tipizzati con ulteriori metodi molecolari per poterli classificare prima in gruppi filogenetici e successivamente, mediante Multilocus Sequence Typing (MSLT), in cloni. Negli isolati risultati resistenti alla colistina sono stati ricercati anche i geni da mcr-1 a mcr-5.

Screening molecolare

Nella quasi totalità degli isolati (97,7%) è stato possibile identificare uno o più geni codificanti ESBL. I geni del gruppo CTX-M sono risultati i più frequenti sia negli isolati umani che in quelli animali. In particolare, CTX-M-15 è risultato il gene più frequente nell’uomo (75,0%) e nei bovini (51,1%), CTX-M-1 era più diffuso nei suini (58,3%), mentre nel pollame è stato individuato con maggiore frequenza il gene CTX-M-15 (36,6%), unitamente a geni di tipo diverso (SHV e CMY-2, 29,9%).

Nella quasi totalità degli isolati (97,7%) è stato possibile identificare uno o più geni codificanti ESBL. I geni del gruppo CTX-M sono risultati i più frequenti sia negli isolati umani che in quelli animali. Gli isolati di origine umana appartenevano per lo più al filogruppo B2 (76,5%), mentre solo pochi isolati di origine animale (quasi tutti da pollame) sono stati classificati in questo gruppo (4,3%). I dati emersi dallo studio indicano che i cloni umani e animali di E. coli possono essere portatori degli stessi geni codificanti ESBL, per cui lo scambio di geni responsabili della codifica di meccanismi di resistenza tra ceppi batterici che infettano specie diverse è un fenomeno probabile.

Tra gli isolati di E.coli ESBL-produttori analizzati 14 (di cui solo uno di origine animale) sono risultati resistenti anche ai carbapenemi, anche se in nessuno di essi sono stati rilevati geni codificanti carbapenemasi. I ricercatori spiegano questa apparente contraddizione con la possibilità che all’origine della resistenza ci fossero geni o meccanismi di resistenza diversi da quelli investigati nello studio.

Gruppi filogenetici e cloni

L’analisi filogenetica ha permesso di classificare gli isolati in 7 diversi gruppi filogenetici (A, B1, B2, C, D, E, F). Come già noto, gli isolati di origine umana appartenevano per lo più al filogruppo B2 (76,5%), mentre solo pochi isolati di origine animale (quasi tutti da pollame) sono stati classificati in questo gruppo (4,3%). Gli isolati animali si distribuivano invece prevalentemente tra i gruppi A (35,7%), B1 (26,1%) e C (12,4%).

La tipizzazione effettuata con la tecnica MSLT ha rivelato poi che la maggior parte degli isolati di origine umana (83,4%) apparteneva al clone pandemico ST131, che era frequentemente portatore del gene CTX-M-15 (75,9%). Questo clone è stato rilevato solo raramente negli isolati di origine animale (solo 3 isolati, originati tutti da pollame).

Scambi genetici, un’ipotesi da approfondire

I dati emersi dallo studio indicano che gli isolati ESBL-produttori di E. coli responsabili di infezioni extra-intestinali nell’uomo e quelli che colonizzano gli animali allevati per la produzione di alimenti sono per lo più diversi, con il clone ST131 che si conferma poco diffuso negli animali.  Tuttavia, come già evidenziato in altri studi, i cloni umani e animali di E. coli possono essere portatori degli stessi geni codificanti ESBL.

Lo scambio di geni responsabili della codifica di meccanismi di resistenza tra ceppi batterici che infettano specie diverse è quindi un fenomeno probabile, soprattutto se sussistono fattori di rischio come l’impiego non prudente di antimicrobici; dovrà quindi essere indagato ulteriormente dalla comunità scientifica e monitorato dalle autorità sanitarie.

Infine 42 isolati analizzati nello studio sono risultati resistenti anche alla colistina; di questi 29 (3 provenienti da matrici umane e 26 da matrici animali) erano portatori del gene mcr-1, veicolato su elementi genetici mobili (i cosiddetti plasmidi) facilmente interscambiabili fra batteri diversi. Uno degli isolati da matrici umane apparteneva al clone ST131. Sulla base di queste evidenze, gli autori dello studio sottolineano l’importanza di mantenere una sorveglianza anche verso questo tipo di resistenza.

Fonte: IZS delle Venezie




Nuova definizione One Health promossa dal tripartito e l’ UNEP

L’Organizzazione delle Nazioni Unite per l’alimentazione e l’agricoltura (FAO), l’Organizzazione mondiale per la salute animale (OIE), il Programma delle Nazioni Unite per l’ambiente (UNEP) e l’Organizzazione mondiale della sanità (OMS), collaborano da tempo  per essere pronti nel  prevenire, prevedere, rilevare e rispondere alle minacce per la salute globale e promuovere uno  sviluppo sostenibile.

In quest’ ottica di  integrazione raccolgono  la nuova definizione operativa di ONE HEALTH proposta dal loro comitato consultivo  OHHLEP (One Health High Level Expert Panel), costituito da esperti di alto livello  nei diversi settori politici e scientifici mondiali  inerenti il tema del ONE HEALTH.

Questa la definizione elaborata dal gruppo di esperti:

One Health è un approccio integrato e unificante che mira a bilanciare e ottimizzare in modo sostenibile la salute di persone, animali ed ecosistemi. Riconosce che la salute degli esseri umani, degli animali domestici e selvatici, delle piante e dell’ambiente in generale (compresi gli ecosistemi) sono strettamente collegati e interdipendenti. L’approccio mobilita più settori, discipline e comunità a vari livelli della società per lavorare insieme per promuovere il bene -essere e affrontare le minacce alla salute e agli ecosistemi, affrontando nel contempo la necessità collettiva di acqua, energia e aria pulite, cibo sicuro e nutriente, intervenendo sui cambiamenti climatici e contribuendo allo sviluppo sostenibile.

L’ OHHLEP ha sollevato per primo l’ importanza di introdurre una definizione completa di One Health, allo scopo di promuovere una comune  comprensione di quello che concerne l’ applicazione del suo approccio in tutti i settori e aree di competenza.

Il proseguio di attività specialistiche previste nei settori come salute, cibo, acqua, energia e ambiente si assocerà ad una  collaborazione tra le diverse  discipline al fine di proteggere la salute globale,  affrontando sfide sanitarie come la diffusione di zoonosi emergenti  e della resistenza antimicrobica,  promuovendo nel contempo la conservazione e la tutela  dell’ ecosistema.

L’ approccio adottato si può applicare su più livelli (regionale, nazionale, comunitario, globale) e si basa su più elementi come governance, comunicazione, collaborazione e coordinamento condivisi ed efficaci.

Come riportato sul sito dell’ OIE, il  Tripartito ( FAO, OIE, OMS) e l’UNEP continueranno a coordinare e implementare le attività in linea con lo spirito della nuova definizione OHHLEP di One Health.

Fonte: IZS Lazio e Toscana